
The Design and Implementation of a
Domain-Specific Language

for Network Performance Testing
Scott Pakin

Abstract—CONCEPTUAL is a toolset designed specifically to help measure the performance of high-speed interconnection networks

such as those used in workstation clusters and parallel computers. It centers around a high-level domain-specific language, which

makes it easy for a programmer to express, measure, and report the performance of complex communication patterns. The primary

challenge in implementing a compiler for such a language is that the generated code must be extremely efficient so as not to

misattribute overhead costs to the messaging library. At the same time, the language itself must not sacrifice expressiveness for

compiler efficiency, or there would be little point in using a high-level language for performance testing. This paper describes the

CONCEPTUAL language and the CONCEPTUAL compiler’s novel code-generation framework. The language provides primitives for a

wide variety of idioms needed for performance testing and emphasizes a readable syntax. The core code-generation technique, based

on unrolling CONCEPTUAL programs into sequences of communication events, is simple yet enables the efficient implementation of a

variety of high-level constructs. The paper further explains how CONCEPTUAL implements time-bounded loops—even those that

comprise blocking communication—in the absence of a time-out mechanism as this is a somewhat unique language/implementation

feature.

Index Terms—Interprocessor communications, measurement techniques, specialized application languages.

Ç

1 INTRODUCTION

THE performance of parallel applications is determined in
large part by the speed of the interconnection net-

work(s) that link together the nodes of a parallel computer
or workstation cluster. Understanding parallel-application
performance therefore relies on an understanding of the
performance of the underlying network. Furthermore,
designers of networks and software/firmware messaging
layers need to be able to quantify the performance impact of
various design modifications. Accurate network perfor-
mance testing is therefore critical to both the understanding
and improvement of overall application performance.

The problem with the way that network performance is
currently tested is that testing relies on general-purpose
communication benchmarks that provide limited insight into
any particular application’s performance. These general-
purpose benchmarks typically report the performance
achievable when combining a small set of communication
primitives into a simple communication pattern. In such
benchmarks, it is common that both end points are always
ready to communicate, there is no intervening computation,
and message data is immediately discarded. This behavior is
discrepant with that of most complete applications. Although
general-purpose benchmarks are useful for demonstrating
the communication subsystem’s peak performance in a

commonly understood format, special-purpose benchmarks
targeted to a particular inquiry are an important complement.
Unfortunately, special-purpose tests receive little attention in
practice and in the literature because they are tedious to
write—especially considering that they may be run only a few
times before being discarded—and are difficult to explain
precisely to others.

CONCEPTUAL—the capitalized letters stand for “Net-
work Correctness and Performance Testing Language”—is
a toolset created to facilitate the construction and explica-
tion of special-purpose network performance tests. At its
core is a domain-specific language that provides primitives
for frequently used idioms in communication benchmarks.
The language supports collective and point-to-point com-
munication operations (both blocking and nonblocking),
precise control over buffer alignment and buffer reuse,
support for verifying or simply touching message contents,
event timing, statistics calculation, data logging, explicit
delays and synthesized computation, command-line par-
sing, and various other features of relevance to commu-
nication benchmarking. The CONCEPTUAL language is
designed to read like English-language pseudocode yet
remain as precise as any other programming language.
Furthermore, CONCEPTUAL abstracts communication
away from any particular messaging layer’s semantics,
ensuring that programs are portable across messaging
layers and thereby enabling the comparison of different
messaging layers’ performance.

This paper’s primary technical contributions are:

1. the presentation of a novel compiler code-generation
strategy that enables network benchmarks expressed

1436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

. The author is with the Los Alamos National Laboratory, MS B287, Los
Alamos, NM 87545. E-mail: pakin@lanl.gov.

Manuscript received 9 Jan. 2006; revised 20 Sept. 2006; accepted 18 Dec.
2006; published online 9 Jan. 2007.
Recommended for acceptance by R. Eigenmann.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0008-0106.
Digital Object Identifier no. 10.1109/TPDS.2007.1065.

US Government Work Not Protected by US Copyright

in a high-level domain-specific language to observe
no more measurement overhead than those ex-
pressed in C, and

2. a demonstration of a language semantics that
provides provably deadlock-free and race-free com-
munication, facilitates the expression of complex
communication patterns, supports time-bounded
iteration, and enables more accurate bit-error report-
ing than what is possible via a checksum or cyclic
redundancy check.

The remainder of this paper is organized as follows:
Section 2 describes prior work in the area of domain-specific
languages for studying network behavior and explains
what makes CONCEPTUAL unique in this space. Section 3
provides further background information about network
performance testing and presents some of the challenges
inherent in the efficient implementation of a high-level
language like CONCEPTUAL. In Section 4, we describe the
goals of the CONCEPTUAL language and showcase some of
its salient features. The approach currently taken by the
CONCEPTUAL compiler is described in Section 5, and the
performance of this approach is evaluated in Section 6.
Finally, Section 7 draws some conclusions from the
information presented in this paper.

2 RELATED WORK

Although domain-specific languages are used for a variety
of purposes in the broad category of computer networking,
CONCEPTUAL is fairly unique in its use of a domain-
specific language to help users measure the performance of
high-speed interconnection networks. Anecdotal evidence
suggests that a number of small scripting languages for
sequencing and timing communication operations have
been devised. Such languages tend to be rather ad hoc
unpolished creations and are therefore rarely discussed in
the literature. One of the few exceptions is MITRE’s Local
Schedule Executor (LSE) language [1]. LSE is the most
closely related system to CONCEPTUAL and can be
considered the prior state-of-the-art language for measuring
the performance of actual networks. The difference is that
LSE’s level of abstraction resembles that of an assembly
language, whereas CONCEPTUAL provides a rich set of
control structures and presents a high-level Single-Program,
Multiple-Data (SPMD) [2] view of a parallel system.

At a high level, the Testing and Test Control Notation
version 3 (TTCN-3) [3] appears similar in purpose to
CONCEPTUAL. Like CONCEPTUAL, TTCN-3 provides
language support for performing communication opera-
tions and provides support for measuring elapsed time.
However, the focus of the two languages is quite different,
and this difference is reflected in each language’s structure
and basic features. In the context of the Open Systems
Interconnection (OSI) seven-layer network model [4],
TTCN-3’s primary purpose is to validate the correctness
of the application layer, whereas CONCEPTUAL ’s primary
purpose, in contrast, is to measure the performance of the
transport layer. Hence, CONCEPTUAL provides mechan-
isms for controlling the reuse, verification, data touching,
and memory alignment of message buffers, none of which

are supported by TTCN-3—a perfectly valid omission from
the perspective of the OSI application layer. However,
TTCN-3 provides mechanisms for verifying that a particu-
lar request packet results in the reception of a particular
reply packet. CONCEPTUAL cannot perform that type of
verification because message contents are considered
opaque—perfectly correct behavior from the perspective
of the OSI transport layer.

Whereas TTCN-3 emphasizes the testing of communica-
tion protocols, domain-specific languages such as Prolac [5]
have been created to facilitate the implementation of
communication protocols, especially those at the OSI
transport and network layers. Such languages focus on
mechanisms for manipulating message data (extracting
headers, computing checksums, reversing byte ordering,
and so forth) and other protocol state, but lack, for example,
CONCEPTUAL ’s mechanisms for calculating performance
statistics and logging these to a file.

A third category of domain-specific languages that lie
within the broad context of network-related languages
includes those that simulate network behavior, generally by
using a form of guard conditions and event-triggering
messages in the style of Hoare’s Communicating Sequential
Processes (CSP) [6]. TED [7], Maisie [8], and the NetLan-
guage language used by REAL [9] are all examples of
languages in this category. Although domain-specific net-
work-simulation languages are useful for validating proto-
col correctness and abstract notions of performance (for
example, the number of messages needed to implement a
protocol or perform a computation), simulated performance
invariably overlooks some of the myriad implementation
nuances that can significantly impact network performance,
such as the relative alignment of message buffers in the host
memory [10]. This is why there exists a need for a language
like CONCEPTUAL that measures real-time performance on
actual networks.

Outside of the arena of domain-specific languages there
are numerous suites of prefabricated performance tests for
high-speed interconnection networks. Some of the better
known of these include the Intel (formerly Pallas) Message
Passing Interface (MPI) Benchmarks [11], SKaMPI [12],
NetPIPE [13], and Mpptest [14]. CONCEPTUAL comple-
ments prefabricated performance tests by making it easy to
explore in detail anomalous or other interesting perfor-
mance characteristics that are identified by those more
general-purpose tests. For example, when one pair of
researchers observed suboptimal performance on a parti-
cular network benchmark they created a special-purpose
benchmark to investigate message-buffer alignment as a
potential source of the observed performance loss [10].

3 BACKGROUND

The goal of a network performance test is to measure the
performance of a pattern of communication operations
executing in isolation. Network performance tests generally
comprise some initialization (allocating message buffers,
establishing communication channels between processes,
synchronizing processes, and so forth), a call to start the
performance timer, calls to the communication operations
whose performance is to be measured (usually repeated a

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1437

large number of times to amortize timer overhead), a call to
stop the performance timer, and some code to compute the
performance statistics and log these to a file.

It is critical that noncommunication operations (for
example, loop overhead) be minimized to avoid notice-
ably impacting the measured performance. On today’s
parallel computers and workstation clusters, process-to-
process communication across user-level messaging layers
[15], [16] and over a high-speed network can complete in
under 3 �s, including the time to traverse all software,
firmware, and hardware protocol layers [17]. Hence, a
few tens of nanoseconds of overhead can bias measure-
ments by more than a percent.

Most network performance tests are written in C with calls
to an MPI library [18], the de facto standard for communica-
tion within a parallel application, and measure the perfor-
mance of some sequence of back-to-back communication
operations. Because of the difficulty—or at least, sheer
tedium—of expressing in low-level language performance
tests that include such practical factors as computational load
imbalance or intricate many-to-many communication pat-
terns (possibly involving random peer selection), it is rare that
one encounters a nontrivial performance test in practice or in
the literature. Nevertheless, more realistic application-centric
performance tests are important because they provide insight
into application behavior and enable experimentation into
alternative communication patterns or varying computation
costs that would be more time-consuming to implement and
measure in a complete application.

One of CONCEPTUAL’s goals is to make it easy to
express performance tests that more accurately represent or
characterize application behavior. CONCEPTUAL facilitates
the expression of arbitrary communication patterns such as
wavefronts, N-point stencils, trees, random accesses, and
other patterns commonly used by parallel applications.
CONCEPTUAL can also simulate computation, thereby
enhancing its ability to model an application.

From the perspective of code generation, network
performance tests are interesting (and challenging) for the
following reasons:

1. Execution speed is critical when the performance
timer is ticking, but unimportant otherwise (for
example, during program initialization).

2. The important part of a performance test is the calls
into the messaging library and other operations that
are to be timed. These may not be reordered or
optimized away because their order and presence is
significant. All other code should be optimized as
much as possible so as not to attribute extra
overhead to the communication routines.

After highlighting some important aspects of the CON-
CEPTUAL language’s semantics in Section 4, Section 5
describes the CONCEPTUAL code generator and explains
how it addresses the preceding issues.

4 LANGUAGE DESIGN

The driver behind implementing a domain-specific high-
level language for network performance testing is to simplify
the creation of special-purpose tests that can provide
invaluable insight into application behavior. Application-
centric network performance tests have to date received little

attention from the scientific community partly because the
time and effort needed to develop such tests has outweighed
the benefits. CONCEPTUAL thereby serves as an enabling
technology that finally makes it practical to construct
customized tests of network performance.

As a point of terminology, CONCEPTUAL—and for
consistency, this article—uses the word “task” to refer more
abstractly to a process, thread, node, rank, or whatever else is

meaningful to the underlying messaging layer.

4.1 Motivation

The CONCEPTUAL language makes available to the
programmer a large number of idioms that facilitate the
development of a wide variety of network performance
tests. Among these idioms are those for timing the
execution of a block of code, calculating statistics, determin-
ing neighbor tasks in a variety of (logical) network
topologies, transmitting and receiving messages, verifying
error-free communication, controlling message-buffer align-
ment and reuse, parsing the command line, synchronizing
tasks, and logging results to files. Although the same
functionality could be provided with merely a runtime
library, the advantages of using a domain-specific high-
level language include:

1. Portability. CONCEPTUAL programs are not tied to a
particular messaging layer. Hence, the same perfor-
mance test can be used to compare the performance
of disparate messaging layers, for example, to
determine the overhead added to a lower-level
messaging layer by a more feature-rich higher-level
messaging layer.

2. Readability. Although the CONCEPTUAL language
has a formal syntax and precise semantics, CONCEP-
TUAL programs read like English-language text,
making them a viable alternative to imprecise ad hoc
pseudocode for display in a research paper or
technical presentation. Furthermore, like a pseudo-
code description, CONCEPTUAL programs empha-
size the pattern of communication, saving the
programmer from having to initialize messaging
libraries, allocate and fill in data structures, declare
variables, keep statistics, or perform other routine
activities that are external to the communication
pattern being tested. In short, a CONCEPTUAL
program is as readable as pseudocode but as precise
as the corresponding program coded in a low-level
language.

3. Reproducibility. By providing within the language the
mechanisms needed to record performance data,
CONCEPTUAL programs make explicit the set of
operations whose performance is to be measured and
how the resulting data are to be aggregated and
logged to files. The log files that CONCEPTUAL
programs produce—described more thoroughly in a
prior publication [19]—act like a scientist’s laboratory
notebook in that they include not only the results of a
performance-testing experiment, but also the experi-
mental setup under which that experiment was
executed, including any command-line arguments
supplied; the mapping from task number to host
name; the network interface make and model; the
operating system version; the dynamic libraries used;

1438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

the timer type and quality; the CPU count, type, and
clock speed; the amount of physical memory; compi-
ler version and options; the username; the timestamp;
the environment variables; the complete CONCEP-
TUAL source program; the termination condition; the
total execution time; and the number of interrupts
received during the program’s execution. In essence,
whatever cannot be controlled is at least recorded. The
goal is to enable one researcher to completely
reproduce another’s network performance test given
only the log files it generated.

A prior publication [20] argues further why a high-level
domain-specific language is a superior alternative to a
runtime library coupled with a general-purpose language
for the purpose of network performance analysis.

4.2 Grammar

CONCEPTUAL employs a keyword-heavy syntax to help
programs read like an English-language description of a
communication pattern. Although the language has a
formal LALR(1) grammar and therefore requires precision
when writing a program, the result can be read and largely
understood even by someone unfamiliar with CONCEP-
TUAL. (The reader is invited to verify that claim by
examining the code in Fig. 2.) Although space constraints
inhibit the presentation of the complete grammar in this
paper, the CONCEPTUAL User’s Guide [21] provides the
complete Extended Backus-Naur form (EBNF) language
specification. The reader is referred to that document to see
the language’s built-in constructs and evaluate their
generality and expressiveness.

At the time of this writing, CONCEPTUAL’s EBNF
specification includes 56 productions. (For comparison, a
typical expression of the American National Standards
Institute (ANSI) C grammar includes 64 productions.) Fig. 1
lists, as examples of CONCEPTUAL’s grammar, the produc-
tion for a send statement and the production for a message
specification. Using those two productions (and a few not
shown), one can construct fairly elaborate send statements

such as “Tasks etsk such that etsk is even asynchronously
send 5 unique page-aligned messages with data touching to
tasks etskþ1 who receive them synchronously.”1 Note that
the lexer enhances the language’s English-like nature by
canonicalizing word variants such as task/tasks, send/
sends, and it/them and by treating a hyphen as white space
before a keyword, as in “page-aligned.”

4.3 Operational Semantics

One can imagine a CONCEPTUAL program compiling to an
n-processor abstract machine. Each processor’s state can be
represented as a 7-tuple Si ¼ ðp; B;A;K;C; V ; T Þ; 0 � i < n
in which p is the program counter, B is a vector of message
queues indexed by the sender for blocking point-to-point
messages, A is a vector of message queues indexed by the
sender for nonblocking point-to-point messages, K is a
vector of message queues indexed by the sender for
blocking collective operations (currently, multicasts, reduc-
tions, and barrier synchronizations), C is a stack of loop trip
counters, V is a stack of queues of loop values, and T is a
stack of loop time counters. Although each processor has its
own program counter, CONCEPTUAL uses an SPMD
semantics. That is, all processors execute the same
statements in the same order although possibly skewed in
time and possibly effecting different state transitions. In
addition to storing each processor’s local state, the abstract
machine also provides a single wall-clock timer � , which is
shared by all n processors.

Only control structures and communication operations
affect the abstract machine’s state. All other CONCEPTUAL
statements—logging measurements, outputting status in-
formation, touching memory, introducing delays, evaluat-
ing assertions, and so forth—induce no state changes other
than incrementing the program counter.

We define VPushð��; �Þ as the contents of vector � after
element � is pushed onto stack �� and VPopð��; �Þ as the
contents of vector � after the top element �, is popped from

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1439

Fig. 1. Sample productions from the CONCEPTUAL grammar.

1. This line of code—and, in addition, all future one-line code examples
in this paper—is also a complete CONCEPTUAL program.

Fig. 2. CONCEPTUAL implementation of a wavefront algorithm as a network performance test.

stack �� (and discarded). If the stack is empty or the top
element is not �, VPop waits until the stack is nonempty,
and the top element is �. We further define Enqueueð�; �Þ as
the contents of queue � after element � is pushed onto it,
Pushð�; �Þ as the contents of stack � after element � is
pushed onto it, Popð�Þ as the contents of stack or queue �
after its head is popped (and discarded), and �top as the
element at the head of stack or queue �.

4.3.1 Point-to-Point Communication

Consider the basic CONCEPTUAL send statement, which
takes a set of source tasks and a set of destination tasks and
sends a message m from each source to each destination (as
in “Tasks abc such that abc is even send a 1-megabyte
message to tasks abcþ1”). Formally, send defines the
following sequence of state changes:

1. 8s 2 sources, d 2 dests, Sd ðp;VPopðBs;mÞ; A;K;
C; V ; T Þd,

2. 8s 2 sources, d 2 dests, Sd ðp;VPushðBs;mÞ; A;K;
C; V ; T Þd, and

3. 8i2½0; nÞ, Si ðpþ 1; B;A;K;C; V ; T Þi.
Here, m encodes all of the attributes of the message, most
notably the sender’s processor number and the message
size. Step 1 in the preceding list of state changes is omitted if
the unsuspecting keyword precedes the set of destination
tasks (as in “Task 0 sends a 3-kilobyte message to

unsuspecting tasks q such that q > 5”).
Messages sent asynchronously (as in, “All tasks asyn-

chronously send a 32-byte-aligned doubleword-sized mes-

sage to task numtasks�1”) are enqueued on the recipients’
nonblocking message queue and not immediately popped:
1) 8s2sources, d 2 dests, Sd ðp; B;VPushðAs;mÞ; K;C; V ;
T Þd, and 2) 8i 2 ½0; nÞ, Si ðpþ 1; B;A;K;C; V ; T Þi. Mes-
sages sent asynchronously are popped by awaiting their
completion (“Task numtasks�1 awaits completion”):
1) 8s 2 sources, d 2 dests, m 2 As, Sd ðp; B;VPopðAs;mÞ;
K;C; V ; T Þd, and 2)8i 2 ½0; nÞ,Si ðpþ 1; B; A;K;C; V ; T Þi.

4.3.2 Collective Communication

Collective operations support by CONCEPTUAL—multi-
casts, reductions, and synchronizations—can be imple-
mented similarly to the point-to-point send operation, but
uses the abstract machine’s K state instead of the B or A
state. All collectives are synchronizing operations and so
can be represented by the state changes in the following
two-pass ring:

1. 8t 2 ½1; jtasksjÞ,

Staskst ðp; B;A;VPopðKtaskst�1
;mÞ; C; V ; T Þtaskst ;

2. 8t 2 ½0; jtasksj � 1Þ,

Staskst ðp;B;A;VPushðKtaskstþ1
;mÞ; C; V ; T Þtaskst ;

3. Stasks0
 ðp; B;A;VPopðKtaskslast ; mÞ; C; V ; T Þtasks0

,
4. 8t 2 ½1; jtasksjÞ,

Staskst ðp; B;A;VPopðKtaskst�1
;mÞ; C; V ; T Þtaskst ;

5. 8t 2 ½0; jtasksj � 1Þ,

Staskst ðp; B;A;VPushðKtaskstþ1
;mÞ; C; V ; T Þtaskst ;

and
6. 8i 2 ½0; nÞ, Si ðpþ 1; B;A;K;C; V ; T Þi.

4.3.3 Control Structures

CONCEPTUAL provides three looping constructs. The
simplest performs a fixed number of iterations c, as in
“For 10 repetitions hstatementi.” The C state variable
counts the number of remaining iterations:

1. 8i 2 ½0; nÞ, Si ðp;B;A;K;VPushðCi; cÞ; V ; T Þi,
2. recursively perform hstatementi’s state changes,
3. 8i 2 ½0; nÞ, Si ðp;B;A;K;Ctop � 1; V ; T Þi, and
4. if Ci ¼ 0, then 8i 2 ½0; nÞ,

Si ðpð2Þ; B;A;K;C; V ; T Þi;

else, Si ðpþ 1; B;A;K;C; V ; T Þi. (pð2Þ is the ad-
dress of Step 2.)

CONCEPTUAL’s second looping construct iterates over a
finite set of values F . An example is “For each val in {0}, {1,
2, 4, . . . , 128K} hstatementi,” which assigns to val each value
in the set {0} followed by each value in the geometric
progression {1, 2, 4, . . . , 131,072}. (CONCEPTUAL auto-
matically detects both arithmetic and geometric progres-
sions.) Semantically, this looping construct performs the
following operations:

1. 8i2½0; nÞ, v 2 F; Si ðp;B;A;K;C;PushðV ; fgÞ; T Þi,
2. 8i 2 ½0; nÞ,

v 2 F; Si ðp; B;A;K;C;EnqueueðVtop; vÞ; T Þi;

3. recursively perform hstatementi’s state changes with
the loop variable bound to Vtoptop

,
4. 8i 2 ½0; nÞ, Si ðp;B;A;K;C;PopðVtopÞ; T Þi, and
5. if Vtop 6¼ �, then 8i 2 ½0; nÞ,

Si ðpð2Þ; B;A;K;C; V ; T Þi;

else, Si ðpþ 1; B;A;K;C;PopðV Þ; T Þi.
The third and final looping construct is a timed loop,

which runs for a fixed length of time t, as in “For 5 minutes
hstatementi.” These loops utilize the abstract machine’s
global wall-clock timer � as follows:

1. all processors synchronize (as described above
under Collective Communication),

2. 8i 2 ½0; nÞ, Si ðp;B;A;K;C; V ;PushðTi; � þ tÞÞi,
3. recursively perform hstatementi’s state changes, and
4. if � < T0top , then 8i 2 ½0; nÞ,

Si ðpð3Þ; B;A;K;C; V ; T Þi;

else Si ðpþ 1; B;A;K;C; V ;PopðT; TitopÞÞi.

4.4 Observations

Some observations one should make from the preceding
presentation of CONCEPTUAL’s semantics are that

1. all messages sent from s to d are received in order
by d,

1440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

2. there is no implied ordering of messages sent from
two different processors to the same destination,

3. a message must be received explicitly (i.e., there is
no “receive any” mechanism), and

4. all loops are executed by all processors and have the
same loop bounds on all processors.

The implications of some of these observations are
discussed in Sections 4.5 and 4.6.

4.5 Design Decision #1: Language Structure

CONCEPTUAL programs represent finite-state machines.
Therefore, CONCEPTUAL is not Turing-complete. It is not
possible, for instance, to express an unbounded loop in
CONCEPTUAL. There are no variables as such, only let-
bindings. Furthermore, a variable cannot be bound to any
task-specific value such as a task ID, random number, or
length of time. An important ramification of these design
decisions is that they enable the compiler to reason about
programs in a manner that would not be possible if
CONCEPTUAL were Turing-complete. For example, as we
shall see in Section 5, the CONCEPTUAL compiler exploits
the knowledge that a loop will perform a finite number of
iterations and that if there is no explicit loop variable, the
loop is guaranteed to execute the same code on every
iteration.

Communication, iteration, and measurement are explicit
in a CONCEPTUAL program, whereas initialization, buffer
allocation, and management of all of the underlying
message-passing library’s nuances are handled implicitly
by the compiler and runtime system. The challenge is in
devising a code generator that is so efficient that arbitrary
CONCEPTUAL code runs as fast as an equivalent program
that is hand-coded in a low-level language and manually
structured to minimize the overhead of noncommunication
operations. This challenge is the subject of Section 5.

4.6 Design Decision 2: Messaging Semantics

By default, the CONCEPTUAL send statement implicitly
posts matching receives because this is the common case in
many network performance tests. The semantics is such that
for a given task, all of the receives introduced by a given send

statement are posted concurrently before any of the sends.
One important language design decision is that task

numbers can be referred to only within simple state-
ments—communication, “computation,” logging, and so
forth—but not within, for example, let-bindings or condi-
tionals. Because of CONCEPTUAL’s SPMD [2] semantics,
that decision guarantees that all tasks let-bind the same
values to the same variables, follow the same control path
and, consequently, agree globally on the sender(s) and
receiver(s) for every communication operation. This global
agreement has deep implications for programmability in
that it provides a simple mechanism for avoiding deadlock.

Proposition 1. In CONCEPTUAL, no sequence of communica-
tion operations in which 1) there are no sends to self and
2) each operation specifies exactly one sender and exactly one
receiver can lead to deadlocked communication.

Proof. Assume that there exists a sequence of point-to-point
communication operations

fS1 ! R1; S2 ! R2; . . . ; Sn ! Rng;

Si 6¼ Ri that does lead to communication deadlock. (Si
represents the ith sender, and Ri represents the
ith receiver in the sequence of n sends and n receives.)
This implies that for some subset of tasks, each task in
that subset is blocked at a receive (alternatively, send)
waiting for a send (alternatively, receive) from another
task; in other words, there exists a cycle of dependencies.

Because CONCEPTUAL ensures that all tasks use the
same variable bindings, all tasks therefore attribute the
same sender and receiver to a given (static) send
statement. Because all tasks follow the same control
path, all (dynamic) communication operations must be
observed and, when applicable, performed by all tasks.
As a result of these constraints, all tasks must agree that
S1 is the first sender and R1 is the first receiver.
Therefore, the S1 ! R1 communication operation can
clearly complete because there are no communication
operations ahead of it. Afterward, all tasks must agree
that S2 is the first remaining sender and R2 is the first
remaining receiver, so S2 ! R2 can complete. The result
is that there exists a total ordering on communication
operations. However, a total ordering contradicts the
notion that there is a cycle of dependencies (with a cycle
implying no ordering). This violates the assumption that
deadlock is possible and thereby proves that it is not. tu

As an example, expressing ring communication as “For

each tnum in f0; . . . ; num tasks� 1g task tnum sends a

2 gigabyte message to task (tnumþ1) mod num_tasks”
guarantees deadlock-free execution as long as the program
is run with at least two tasks (so as not to violate the first
condition of Proposition 1). However, caution must be
exerted when performing multiple communication opera-
tions in a single send statement. “All tasks tnum send a

2 gigabyte message to task (tnumþ1) mod num_tasks” will
deadlock because all of the receives are posted concurrently
followed by all of the sends, thereby contradicting the
notion of a “first” Si ! Ri operation. Similarly, programs
can safely perform blocking communication among ran-
domly selected tasks without fear of them deadlocking—an
important consequence for programmers who wish to
utilize randomness in network performance tests.

A second design decision involving the messaging
semantics is that all messages sent from s to d are received
by d in the order in which they were sent by s and,
furthermore, there are no wildcard receives; to receive a
message, a task must specify explicitly the sender and the
message size. An important consequence of this construc-
tion is that CONCEPTUAL programs are completely
deterministic. It is not possible to express a race condition
in a CONCEPTUAL program.

Any communication operation that targets a nonexistent
task is silently dropped. This design decision reduces the
reliance on special cases for edge tasks and simplifies
programs, similar to the way that ZPL’s “@”-operator [22]
simplifies programs by reducing the reliance on special cases
for edge elements in array operations. Furthermore, as
Section 5 explains, dropped communication operations have
no impact on performance. CONCEPTUAL’s nonexistent-
task semantics implies that a deadlock-free ring can also be
expressed with “All tasks tnum send a 2 gigabyte message to

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1441

task tnumþ1 then task num_tasks�1 sends a 2 gigabyte
message to task 0” even though the first send specifies—a-
mong other communications—that task num_tasks�1 sends
a message to nonexistent task num_tasks.

Finally, messages in CONCEPTUAL are opaque. That is,
a program cannot explicitly read or write a message’s
contents. This design decision gives the runtime system
some additional flexibility that is needed to support
statements such as “For 1E6 repetitions, task 0 sends a
10 megabyte message with verification to task 1 then
task 1 logs bit_errors as “Bad bits.” ” Whereas a checksum
or cyclic redundancy check cannot give an accurate count of
bit errors, CONCEPTUAL can do so by sending a message
with known contents and tallying the number of incorrect
bits on the receive side. More precisely, each message sent
with verification comprises a one-word random-number
seed followed by the first N � 1 random numbers produced
using that seed. (CONCEPTUAL uses a 64-bit Mersenne
Twister [23] as its random-number generator.) The message
recipient initializes its random-number generator using the
seed taken from the message, generates N � 1 random
numbers, and performs a bitwise comparison of the two
message streams to acquire an accurate bit-error count.
Although a corrupted seed will produce false positives, it is
virtually impossible for the existence of a bit error to pass
undetected when using this scheme.

4.7 A Complete Program

Up to this point, only single-line CONCEPTUAL programs
have been presented. In this section, we examine a complete
network performance test in some detail. Network perfor-
mance tests are used for a variety of purposes: 1) proto-
typing communication algorithms before implementing
them in a library, 2) creating application mock-ups to aid
the analysis by separating communication and computation
costs, and 3) informing performance models, which
formulate application scalability as a function of network
performance. A typical network performance test, at least in
the context of parallel computing, comprises timing
measurements of a specified communication pattern. This
pattern is generally repeated a number of times to amortize
the timer overhead.

Consider a wavefront communication pattern, as is used
in deterministic transport applications such as Sweep3D
[24]. For the purpose of exposition, we use a simplified
version of Sweep3D’s communication pattern, as illustrated
in Fig. 3 for a 4 � 5 task grid. In this simplified version, only
a single wavefront is propagated through the task grid; the
multiple wavefront directions used in the actual Sweep3D
code would be implemented analogously.

To express a wavefront communication pattern as a
benchmark we specify that task 0 begins the wavefront and
the final task in the task grid sends a message back to task 0
to notify it to stop the clock. (For a proper network
performance test one cannot assume that clocks are globally
synchronized across the entire network.) We further specify
that task 0 logs the mean and standard deviation of the per-
hop latency across some number of repetitions of this
pattern.

The complete CONCEPTUAL code for the wavefront
benchmark is presented in Fig. 2. The code in Fig. 2 is
typical of a CONCEPTUAL program both in terms of length
and complexity. CONCEPTUAL programs rarely need to be

longer than a few tens of lines to implement even the most
intricate communication patterns used by realistic parallel
programs.

Each of the first three lines of the program defines a
command-line option, including a description to be output
if the program is run with --help. The program’s main
loop, lines 5-11, is repeated reps times, the default being 1E5
(that is, 10,000), as specified in line 2. Line 6 resets the
performance timer and a variety of other counters (bit-error
counts and tallies of bytes and messages sent/received).

The entire wavefront communication pattern is imple-
mented in line 7 with line 8 sending a message from the
final task back to task 0. In line 7, the “dst = src + xdim”
condition makes every task send downward, and the “(dst
= src + 1 ^ dst mod xdim <> 0)” condition makes every
task except those on the right edge of the task grid send to
the right. Note that no special case is needed for the
sending-downward condition; CONCEPTUAL automati-
cally suppresses messages sent to nonexistent tasks. In the
sending-right condition, task srcþ1 does exist, so a special
case is needed. In practice, line 7 can be simplified by
exploiting CONCEPTUAL’s built-in mesh_neighbor func-
tion; the line is shown as it is to emphasize the generality of
CONCEPTUAL’s primitive operations.

Lines 9 and 10 calculate the mean and standard deviation
of the per-hop latency across all reps repetitions and log these
values to the disk using the string “Per-hop latency (usecs)” as
the primary column header for both columns. A secondary
column header—“(mean)” for the first column and “(std.
dev.)” for the second column—is generated automatically by
CONCEPTUAL. The predeclared elapsed_usecs variable
keeps track of the number of microseconds that have elapsed
since the beginning of the program or the last resets its
counters statement.

CONCEPTUAL’s English-like syntax makes CONCEP-
TUAL programs quite readable. Nevertheless, CONCEP-
TUAL programs may appear excessively verbose to a
programmer conversant only with more traditional gen-
eral-purpose programming languages. However, because
CONCEPTUAL’s domain-specific semantics supports im-
plicit receives and discarded communication with non-
existent tasks, CONCEPTUAL programs are generally
significantly shorter than those written in other languages.
To help validate this claim, Fig. 4 implements the same
functionality as lines 7-8 of the code in Fig. 2, but in C and

1442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 3. Wavefront communication pattern.

using MPI as the communication library—the most
common language/library combination for developing

tests of communication performance for parallel computers
and workstation clusters. The C code is written with no
unnecessary spaces so as to minimize its length. Table 1
compares the code in Fig. 4 to that in Fig. 5, which

represents lines 7-8 of the code in Fig. 2 with unnecessary
spaces removed. According to the table, regardless of
whether one counts statements, tokens, or characters, the

CONCEPTUAL code is significantly shorter than the
corresponding C code. The difference in code length is
even greater when comparing versions of the complete
wavefront benchmark because the C version has to include

header files, declare variables, allocate memory, compute
performance statistics, and perform various other minor
operations. None of these requires much code by itself, but
they add up to a total program length much greater than

the equivalent CONCEPTUAL program. This is no accident;
CONCEPTUAL is designed to facilitate the efficient expres-
sion of network performance tests.

5 IMPLEMENTATION

The CONCEPTUAL compiler follows a classic compiler

structure: front end, lexer, parser, semantic analyzer, and

code generator. CONCEPTUAL supports a variety of code

generators from which the user selects at compile time. As

of this writing, CONCEPTUAL includes

. a code generator that produces a C code with calls to
an MPI [18] library for communication,

. a code generator that produces a C code that
communicates using Unix-domain datagram sock-
ets [25],

and a few compiler back ends that are not technically code

generators, including

. a CONCEPTUAL interpreter that exploits its global
knowledge of the program execution to detect and
report deadlocks and other communication bugs in
the user’s code,

. a back end that uses Dot [26] to visualize the abstract
syntax tree corresponding to the input program,

. a back end that specializes any of the C-based back
ends, inserting tracing calls (fprintf()s or calls to
the curses library) into the generated C code,

. a back end that specializes any of the C-based back
ends, inserting timing code around every individual
communication operation,

. a back end that reports a variety of statistics about a
program’s execution (for example, network-bisec-
tion volume and communication-peer offsets), and

. a back end that uses LATEX and PSTricks [27] to draw
the space-time diagram corresponding to a run of a
CONCEPTUAL program.

CONCEPTUAL can theoretically compile to any language/
messaging library combination; the preceding list repre-
sents only the first batch of back ends that have been
developed.

The ability to produce a space-time diagram of a
program’s execution directly from the CONCEPTUAL
source (using the LATEXþ PSTricks back end) has proven
to be an immensely useful capability. Subtle bugs in the
implementation of a communication pattern become trans-
parent upon examination of a graphical depiction of the
communication operations. Also, because CONCEPTUAL is
commonly used to implement performance tests that
employ nonstandard communication patterns, a visual
representation of these patterns is often the most effective
way to convey a test’s operation.

An implementation decision that is eminently relevant to
CONCEPTUAL’s acceptance by the networking community
is that all of the code generators developed to date output
commented human-readable code. It is therefore possible
for one to understand not only the CONCEPTUAL source
program, but also the generated low-level code, and thereby
verify that the benchmark is performing the expected
operations.

The rest of this section focuses on the C-based code
generators, both of which derive from the same base
class—a core C-code generator—and merely specialize it
for the appropriate messaging library.

5.1 The Challenge

Consider, for example, the CONCEPTUAL statement “All
tasks src send a 64 kilobyte message to task (src � 1)/2,”
which causes each task in the program to send a message to
its parent in a logical binary tree. The hand-coded C
equivalent would likely begin with each task determining
whether it is a leaf, a 1-child internal node, a 2-child internal
node, a 1-child root, or a 2-child root and branch to one of
the five main timing loops, as appropriate. By hoisting the
child and parent tallies out of the timing loop, each loop
body can hardwire the number of sends and receives to
post, thereby minimizing the execution-time overhead.
Although it is easy for a human to enumerate all of the
possible alternatives and specialize the communication

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1443

Fig. 4. Dense, C+MPI equivalent of Fig. 2, lines 7-8.

TABLE 1
Comparison of Fig. 4 and Fig. 5

code for each alternative, it is far more challenging for a
compiler to do likewise.

As programs get more complicated than the one-liner
shown above, it becomes difficult even for a human to
structure a program in such a way as to hoist the overhead
out of the timing loop. Consider the CONCEPTUAL
statement “For 1,000 repetitions, let aaa be a random task
and bbb be a random task other than aaa while task aaa
sends a 256 byte message to task bbb.” Random commu-
nication patterns that use blocking communication are
problematic for performance tests for two reasons. First, the
random-number generator must be globally coordinated
across all tasks in the program to prevent a mismatched
send or receive from hanging the program. (Messaging
layers such as MPI [18] lack a time-out mechanism.) Second,
care must be taken to avoid deadlock situations because the
random selection of communication end points can produce
a cycle of blocked tasks if this situation is not explicitly
prevented. Third, random-number generation is a compara-
tively slow operation; a large component of the reported
communication time may in fact be attributable to random-
number generation time. There is virtually no history of
performance tests that employ blocking communication
among randomly selected end points. The parallel version
of the Apex-Map benchmark [28], for example, uses
exclusively nonblocking random communication and em-
ploys a cleanup phase at the end to force the completion of
all mismatched sends and receives.

5.2 Initial Attempt

An early implementation of the CONCEPTUAL compiler took
a straightforward approach to code generation: CONCEP-
TUAL arithmetic expressions produced C arithmetic expres-
sions, CONCEPTUAL communication operations produced
calls to a messaging library’s communication operations,
CONCEPTUAL loops produced C loops, and so forth. For
simple programs, this simple approach worked well and
generated a code that was fairly similar in both style and
performance to the hand-coded C. Unfortunately, the
approach failed to scale with the complexity of the input.
When executing a CONCEPTUAL statement such as “For
each ofs in {1, 2} all tasks sndr send a 64-byte page-aligned
message to task 2�(sndr mod 5) + ofs” with a total of eight
tasks, for example, each task will send zero, one, or
two messages and receive 0, 1, or 2 messages. (As mentioned
in Section 4.6, no messages are sent to or received from
nonexistent tasks.) Because there is an arbitrary relation
between senders and receivers and because the number of
tasks is defined at runtime, the compiler does not know how
many sends or receives to post. These numbers can be
calculated at runtime, but doing so essentially requires that
each task evaluate “2�(sndr mod 5) + ofs” for every value of
sndr—a costly amount of overhead to incur while commu-
nication time is being measured.

5.3 The Improved Approach

The key observation to make is that the generated code
needs to be efficient only while performance is being measured.

Hence, any overhead operations (that is, those not related to
communication or otherwise relevant to the timing mea-
surements) can be hoisted above the timed blocks of the
code to program initialization time. This is in contrast to the
typical manner in which compiler performance is evaluated
in which the entire program’s execution time is considered.
In the rest of this paper, we refer to the period before the
performance timer is started as initialization time and the
period afterward as execution time.

Given that the performance of program initialization is
immaterial (within reason) and that the CONCEPTUAL
language is not Turing-complete, it is possible to “pre-
execute” a CONCEPTUAL program at initialization time. In
essence, the compiler performs a partial evaluation of the
input program with respect to the number of tasks and
command-line arguments and completes the compilation at
initialization time. During the preexecution phase, the
generated code determines the precise set of operations
that will need to be performed once the timer starts ticking
and creates a list of events (send, receive, synchronize,
multicast, “compute,” log to file, and so forth) for the calling
task to execute. For example, if the CONCEPTUAL state-
ment “Tasks nz such that nz is odd send 5 3-doubleword-
sized messages to task 0 who receives them with data
touching” is run with 10 tasks, the event lists of tasks 1, 3, 5,
and 9 will each contain five send events, each specifying the
transmission of a 3-doubleword (24-byte) message to task 0;
task 0’s event list will contain 20 receive events, each
specifying the receipt of a 3-doubleword message whose
data must be touched (read and written) after receipt to
stress the memory hierarchy.

After a task constructs its list of events, it starts the timer
and begins the program’s main loop, which simply iterates
over each event in turn and executes whatever code is
appropriate to the target messaging layer. Fig. 6 presents a
typical instantiation of the event loop as generated by the
C+MPI back end. (The C+sockets back end, for example,
calls send() instead of MPI_Send().) Only events actually
utilized by the CONCEPTUAL program appear as cases in
the switch statement.

To improve memory utilization, CONCEPTUAL’s “for
hexpri repetitions hstatementi” construct produces a
repeat event followed by a single instantiation of the
loop body rather than producing hexpri complete in-
stantiations of the loop body. (Note the recursive
invocation of conc_process_events() in Fig. 6.) This
optimization is possible because there is no loop variable
in “for hexpri repetitions hstatementi”; hence, the loop
body is invariant across iterations. In contrast, CONCEP-
TUAL’s “for each hvari in hseti hstatementi” construct can
result in a different set of events for each iteration and is
therefore ineligible for this memory optimization. In
practice, however, the size of hseti tends to be compara-
tively small, so optimizing memory usage is less im-
portant in that context.

The following are some of the benefits of expanding a
CONCEPTUAL program into an event list at initialization
time:

1444 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 5. Dense version of Fig. 2, lines 7-8.

. There is a consistent mechanism for hoisting events
from the timed part of the performance test to the
untimed initialization part.

. All expressions, no matter how complex, take zero
time to evaluate from the perspective of the timed
part of the code. A corollary is that checking for a
peer task’s existence (for example, in the context of a
send statement) takes zero time from the perspective
of the timed part of the code.

. Any operation that at execution time will not apply to a
particular task is automatically elided from that task’s
event list. Hence, there is no execution-time cost to
interleaving statements applicable to one set of tasks
with statements applicable to a different set of tasks.

. CONCEPTUAL’s functionality can easily be en-
hanced by introducing new events or adding new
fields to existing events—even on a per-back-end
basis. For example, the execution-tracing back end
appends a pair of line-number fields to every event
structure and injects a code into the main loop to
output the name of each event, a few event
parameters, and the lines of the source code to
which that event corresponds.

As a specific example of how an event-based compiler can
reduce the measurement overhead, recall that CONCEPTUAL
enables source and destination tasks to be selected using a
random-number generator, as showcased in Section 5.1.
Although random-number generation is a comparatively
slow operation, the cost is hoisted to initialization time and
therefore imposes no more penalty at performance-testing
time than would the use of constants.

A related approach could be to create an event list at
compile time instead of initialization time. Doing so could
reduce the overhead by replacing Fig. 6’s switch statement

and for loops with straight-line calls to the underlying
messaging layer. However, this approach would either
restrict each CONCEPTUAL program to a number of tasks
selected at compile time or require the generation of
numerous if statements to check at runtime for commu-
nication with nonexistent tasks. Consider “All tasks ff send
a message to task ff–5”; how many receives should task 0
post?

5.4 Timed Loops

Performance tests that run for a bounded length of time
rather than a bounded number of iterations are more
common in the context of Internet networking than in the
context of parallel-computer or cluster networking. Never-
theless, CONCEPTUAL does provide support for such
tests in the form of a timed-loop construct, as in “for
htimei hstatementi.” CONCEPTUAL executes the loop
body for the corresponding length of real time. This is a
best effort operation; a loop iteration is not preempted
before completing.

The challenge of using real-time loop bounds in the
context of network performance tests is that it can lead to
send-receive mismatches that are problematic when em-
ploying blocking communication. Consider, for example,
the case in which task 0 is sending messages to task 1 for a
given length of time. If task 0’s timer expires after posting N
sends but task 1’s timer expires after posting N þ 1 receives,
then task 1 will block indefinitely waiting for a message that
will never arrive. This scenario can occur even if all tasks
are perfectly time synchronized because it may take
different lengths of time to perform a send versus a receive
operation. Existing solutions from other contexts include
using out-of-band data to signal performance-test termina-
tion or using a message-time-out mechanism to prema-
turely terminate a blocking communication operation. The

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1445

Fig. 6. Sample event loop in the CONCEPTUAL-generated C code, specialized for MPI.

former approach is used, for example, by the Netperf
performance-test suite [29], and the latter is used, for
example, by the Erlang parallel-programming language
[30]. Unfortunately, neither approach can be integrated
comfortably into CONCEPTUAL because some messaging
layers (most notably, MPI [18]) lack both out-of-band data
transmissions and message time outs and CONCEPTUAL’s
intention is to be portable across a wide variety of
messaging layers.

Instead, the approach taken by the CONCEPTUAL
implementation is as follows: First, all tasks stop their
performance counters (that is, message counters, byte
counters, the bit-error counter, and the performance timer)
and enter a mode in which nonidempotent operations such
as writing to the log file are suppressed. Then, each task
measures the time needed to perform a fixed number of
trial loop iterations. Because the timed-loop construct does
not employ a loop variable, all iterations are necessarily
identical and can therefore be assumed to take approxi-
mately equal lengths of time. Next, all tasks obtain global
agreement on the number of iterations that can execute in
time htimei by taking the maximum iteration estimate
across all tasks. An overshoot factor is added to this
number so as to better tolerate performance variation. Once
all tasks have agreed upon the number of iterations to
perform, each task reenables the execution of nonidempo-
tent operations, restarts its performance counters, and
performs the agreed-upon number of iterations. After each
loop iteration, each task checks if time htimei has elapsed. If
so, the task stops its performance counters and once again
suppresses nonidempotent operations, but continues run-
ning until all iterations have completed. Once all tasks have
exited the loop, they synchronize and return to their normal
execution mode.

The preceding approach achieves the goal of iterating for
a bounded length of time without sacrificing portability
across messaging layers or support for blocking commu-
nication operations. Each task’s performance timer “sees”
the correct length of time although more iterations may
actually have been performed. Like the core CONCEPTUAL
implementation structure described in Section 5.3, the
implementation of timed loops exploits the underlying
assumption that performance is important only during the
timed part of a program’s execution. Before the perfor-
mance timer starts and while the timer is paused, extra
operations can be executed to reduce the overhead or
enhance functionality without incorrectly attributing their
cost to communication.

6 EVALUATION

In this section, we evaluate the approach taken by the
CONCEPTUAL compiler, namely, the compilation of net-
work performance tests into a code that evaluates expres-
sions and loops at program initialization time and merely
executes each event in a generated event list during
execution time. The metric on which we choose to focus is
the overhead reported in the timing measurements. That is,
for a given performance test, we wish to determine how
much worse the CONCEPTUAL-reported performance is
than that reported by a hand-coded C program.

To make the comparison as stringent as possible, we
utilize a communication latency test as our benchmark. A
latency test is, in spirit, the networking analog of a compiler
benchmark that computes the nth Fibonacci number: Both

programs are so simple that they offer a high-level language
compiler no opportunity to improve performance over that
realized by a low-level language but myriad opportunities
to degrade performance. The goal of a latency test is to
measure the time to send a message of a given size from one
task to another and back. The test reports half of that round-
trip time as an estimate of the one-way time. (Clocks are
rarely globally synchronized—especially not to submicro-
second granularity—so one-way latency cannot generally
be measured directly.) Because there is no overlap of
communication operations and because all communication
is blocking, all overhead introduced by the compiler is
exposed in the timing measurements. To further emphasize
any inefficiencies in the CONCEPTUAL-generated code, we
measure the latency only of small messages—those consist-
ing of merely 0-32 bytes of payload. Doing so prevents code
overheads from appearing insignificant relative to large-
message transmission times.

There are numerous ways to construct a latency test; subtle
variations in implementation can result in dramatically
different performance being reported [19]. To avoid biasing
the selection of a particular latency test toward one that may
lend itself well to an efficient CONCEPTUAL implementation,
we started with an existing latency program that has been
used to measure performance on a variety of networks, is
freely available on the Web, has been discussed in the
literature [31], and originates from an established research
group bearing no connection to that of the author.

The original code, written in C with calls to an MPI
library [18], is available at http://nowlab.cse.ohio-state.
edu/projects/mpi-iba/performance/osu_latency.c. The
CONCEPTUAL equivalent is presented in its entirety in
Fig. 7. Although the two versions of the latency test perform
identical communication operations and use the same
number and alignment of message buffers, the CONCEP-
TUAL version requires only a third as much code as the C
version yet is strictly more featureful. The CONCEPTUAL
version accepts command-line options where the original
uses hardwired constants; it verifies that there are at least
two tasks available and outputs a helpful error message if
not; and it logs not only the performance measurements,
but also enough information about the execution environ-
ment to facilitate the reproduction of the experiment and
results by a third party [19]. The question, therefore, is how
faithful the CONCEPTUAL-generated performance mea-
surements are to those reported by the original C code.

We compared the performance reported by the hand-
coded C+MPI version of the latency test to that reported by
the CONCEPTUAL version compiled using the C+MPI code
generator. Both the hand-coded and generated C programs
were compiled with version 7.1 of Intel’s ecc compiler with
optimization level -O3. All tests were run across a pair of dual
1.3-GHz Itanium II nodes interconnected with a Quadrics
QsNet network [32]. For each of the two latency-test
implementations, latency was measured 11 times per
message size. Fig. 8 plots all 11 trials for each data point with
a line running through the arithmetic means and each mean
stated numerically. That figure clearly demonstrates that
there is no qualitative difference between the performances
reported by the two versions of the latency test. More
formally, from a statistics perspective, no conclusions can
be drawn from Fig. 8’s data with 99 percent confidence. With
95 percent confidence, however, one can conclude that the
CONCEPTUAL version of the test does observe a slight
amount of additional overhead relative to the C version. This
overhead—reported here as the ratio of the CONCEPTUAL

1446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

mean latency to the C version’s mean latency— corresponds
to a slowdown of 0.5-0.8 percent. In absolute terms, the
performance difference ranges from 25 to 40 ns (33 to 52 CPU
cycles at 1.3 GHz).

Analyzing the generated assembly code of the two
latency-test versions reveals that the extra overhead ob-
served by the CONCEPTUAL version is caused by loop

start-up overhead in a small-trip event loop (line 10 of
Fig. 6), a switch statement (line 11), and the extraction of
function arguments from a C struct (in lines 13, 16, and 19).
Commenting out all of the communication and logging
code from the event-processing loop while leaving the
overhead code—the loops and switch statement—results in
an average measurement of 37 ns (48 CPU cycles) of
overhead per event. As stated earlier in this section, a small-
message latency test offers no opportunity to hide the
overhead, implying that these slowdowns represent an
upper bound in the performance loss induced by the
CONCEPTUAL-generated overhead.

Note that none of these overheads is inherent; a later
version of the CONCEPTUAL compiler may use loop
unrolling to amortize loop start-up costs and may also
coalesce events to amortize switch() costs. The encoura-
ging point is that even in its initial naı̈ve implementation of
event lists, the CONCEPTUAL compiler produces a C code
that is extremely competitive in terms of performance with
the handwritten C code.

7 CONCLUSIONS

The CONCEPTUAL toolset defines a high-level domain-
specific language designed explicitly to simplify the

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1447

Fig. 7. CONCEPTUAL version of osu_latency.c.

Fig. 8. Latency as a function of message size.

construction, presentation, and execution of network
performance tests. CONCEPTUAL places particular empha-
sis on tests of high-speed parallel-computer and work-
station-cluster interconnects and user-level messaging
layers [16]. The challenge in this context is that performance
tests are far more sensitive to overhead than they are in the
context of distributed, client-server, Grid, or other loosely
coupled systems. To minimize the overhead from non-
communication operations, network performance tests are
traditionally written in hand-coded C with calls into a
particular messaging library, thereby sacrificing program
readability (because of explicit program initialization,
buffer allocation, and other distractions that must be
present when writing a code in a general-purpose lan-
guage), ease of expressing complex communication pat-
terns, and portability to other languages/messaging
libraries. CONCEPTUAL’s goal is to address all of these
issues while still reporting the same performance as would
a performance test coded in a low-level general-purpose
language.

From the data presented in Section 6, we can conclude
that CONCEPTUAL has very nearly achieved its goal. We
compared C and CONCEPTUAL performance on a small-
message latency test, which offers no opportunity to hide
the noncommunication overhead behind communication
operations and, therefore, represents a worst-case scenario
for a high-level language compiler. The results show that
there is no qualitative difference between the hand-coded
and CONCEPTUAL-generated versions of this performance
test. Quantitatively, the CONCEPTUAL-generated C pro-
gram exhibits only a fraction of a percent more overhead
than its hand-coded equivalent. Although this overhead is
not to be ignored, we do believe that the benefits offered by
CONCEPTUAL serve as a viable counterweight to a
miniscule performance loss in a worst-case scenario. We
expect that future versions of the CONCEPTUAL compiler
will close the performance gap.

The key insight needed to develop an efficient compiler
for CONCEPTUAL is that execution speed is critical only
while measuring network performance. Consequently,
inherently slow routines such as evaluating complicated
expressions, generating random numbers, determining the
relation of senders to receivers, and finding patterns in loop
arguments (for example, that “ {1, 2, 4, . . . , max_msg_size}”
in line 20 of Fig. 7 represents a geometric sequence) can all
be hoisted to initialization time at which point execution
speed is largely irrelevant. While communication perfor-
mance is being measured, only communication operations
and loops are performed, as is generally the case in a hand-
coded network performance test. The specific application of
the aforementioned insight as presented in this paper is to
unroll a program into a list of events at initialization time
and merely walk that list at execution time. Event lists
provide a uniform operation-hoisting mechanism that
simplifies compiler construction and enables compiler back
ends (such as CONCEPTUAL’s execution-tracing back end)
to specialize other back ends in a consistent manner.

The conclusion that one should draw from this work is
that a careful integration of a language semantics and code-
generation strategy can make even a performance-critical
task such as network performance testing feasible to
express in a high-level language. CONCEPTUAL’s code
generator is able to exploit the distinction between time-
sensitive and time-insensitive operations to reduce the

arbitrary benchmark programs’ measurement overhead to a

level comparable to that which a human can achieve by

custom-optimizing each individual benchmark program.

CONCEPTUAL represents a clearer, more concise, and more

expressive approach to developing network performance

tests than is otherwise possible and, as this paper

demonstrates, can do so with no noticeable degradation

in performance.
The CONCEPTUAL source code and documentation are

freely available at http://conceptual.sourceforge.net/.

REFERENCES

[1] L. Monk, R. Games, J. Ramsdell, A. Kanevsky, C. Brown, and
P. Lee, “Real-Time Communications Scheduling: Final Report,”
Technical Report MTR 97B0000069, The MITRE Corp., Center
for Integrated Intelligence Systems, Bedford, Mass., http://
www.mitre.org/tech/hpc/pdf/rtcs_final.pdf, May 1997.

[2] F. Darema, D.A. George, V.A. Norton, and G.F. Pfister, “A
Single-Program-Multiple-Data Computational Model for EPEX/
FORTRAN,” Parallel Computing, vol. 7, no. 1, pp. 11-24, Apr.
1988.

[3] Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language, European
Technological Standards Inst., Sophia Antipolis Cedex, http://
www.ttcn-3.org/Specifications.htm, 2005.

[4] H. Zimmermann, “OSI Reference Model—The ISO Model of
Architecture for Open Systems Interconnection,” IEEE Trans.
Comm., vol. 28, no. 4, pp. 425-432, http://www.comsoc.org/
livepubs/50_journals/pdf/RightsManagement_eid=136833.pdf,
Apr. 1980.

[5] E. Kohler, M.F. Kaashoek, and D.R. Montgomery, “A Readable
TCP in the Prolac Protocol Language,” Proc. ACM SIGCOMM
’99, pp. 3-13, http://www.pdos.lcs.mit.edu/prolac/sigcomm99.
pdf, 1999.

[6] C.A.R. Hoare, “Communicating Sequential Processes,” Comm.
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[7] K. Perumalla, A. Ogielski, and R. Fujimoto, “TeD—A Language
for Modeling Telecommunication Networks,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 25, no. 4, pp. 4-11, http://
www.cc.gatech.edu/computing/pads/PAPERS/ted-sigmetrics.
ps, Mar. 1998.

[8] R.L. Bagrodia and W.-T. Liao, “Maisie: A Language for the Design
of Efficient Discrete-Event Simulations,” IEEE Trans. Software Eng.,
vol. 20, no. 4, pp. 225-238, http://pcl.cs.ucla.edu/papers/files/
maisie-tse.ps.gz, Apr. 1994.

[9] S. Keshav, “REAL: A Network Simulator,” Technical Report CSD-
88-472, Computer Science Division, Univ. of California, Berkeley,
http://sunsite.berkeley.edu:80/Dienst/Repository/2.0/Body/
ncstrl.ucb/CS D-88-472/pdf, Dec. 1988.

[10] L. Arber and S. Pakin, “The Impact of Message-Buffer
Alignment on Communication Performance,” Parallel Processing
Letters, vol. 15, no. 1, pp. 49-65, http://www.c3.lanl.gov/pal/
publications/papers/Arber2005:alignment.pdf, Mar. 2005.

[11] Intel MPI Benchmarks: Users Guide and Methodology Description,
Intel GmbH, http://www.intel.com/cd/software/products/
asmo-na/eng/cluster/clustertoolkit/219848.htm, Nov. 2004.

[12] R. Reussner, P. Sanders, L. Prechelt, and M. Müller, “SKaMPI: A
Detailed, Accurate MPI Benchmark,” Recent Advances in Parallel
Virtual Machine and Message Passing Interface: Proc. Fifth European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI ’98), pp. 52-59,
http://www.mpi-sb.mpg.de/sanders/papers/europvm-mpi98.
ps.gz, Sept. 1998.

[13] Q.O. Snell, A.R. Mikler, and J.L. Gustafson, “NetPIPE: A Network
Protocol Independent Performance Evaluator,” Proc. IASTED/
ISMM Int’l Conf. Intelligent Information Management Systems,
http://www.scl.ameslab.gov/netpipe/paper/netpipe.ps, June
1996.

[14] W. Gropp and E. Lusk, “Reproducible Measurements of MPI
Performance Characteristics,” Recent Advances in Parallel Virtual
Machine and Message Passing Interface: Proc. Sixth European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI ’99), pp. 11-18,
http://www.mcs.anl.gov/gropp/bib/papers/1999/pvmmpi99/
mpptest.pdf, Sept. 1999.

1448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

[15] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and J. Philbin,
“User-Space Communication: A Quantitative Study,” Proc. ACM/
IEEE Conf. Supercomputing (SC ’98), http://www.cs.princeton.
edu/dubnicki/papers/araki98userspace.pdf, 1998.

[16] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal, “User-Level Network
Interface Protocols,” Computer, vol. 31, no. 11, pp. 53-60, http://
www.cs.cornell.edu/raoul/papers/computer98.pdf, Nov. 1998.

[17] J. Beecroft, D. Addison, F. Petrini, and M. McLaren, “Quadrics
QsNet II: A Network for Supercomputing Applications,” Proc. Hot
Chips 15 Conf., http://hpc.pnl.gov/people/fabrizio/papers/
hot03.pdf, Aug. 2003.

[18] MPI: A Message-Passing Interface Standard, Message Passing Inter-
face Forum, http://www.mpi-forum.org/docs/mpi-11.ps, June
1995.

[19] S. Pakin, “Reproducible Network Benchmarks with CONCEP-
TUAL,” Proc. 10th Int’l Euro-Par Conf., pp. 64-71, 2004,
http://www.c3.lanl.gov/pal/publications/papers/Pakin2004:
reproducible.pdf.

[20] S. Pakin, “Rapid Development of Application-Specific Network
Performance Tests,” Proc. Int’l Conf. Computational Science (ICCS
’05) Workshop Tools for Program Development and Analysis in
Computational Science, http://www.c3.lanl.gov/pal/publications/
papers/Pakin2005:conc-library.pdf, May 2005.

[21] S. Pakin, “CONCEPTUAL User’s Guide,” Technical Report LA-
UR 03-7356, Los Alamos Nat’l Laboratory, Los Alamos, New
Mexico, http://www.c3.lanl.gov/pakin/software/conceptual/
conceptual.pdf, Oct. 2003.

[22] S.J. Deitz, B.L. Chamberlain, and L. Snyder, “Abstractions for
Dynamic Data Distribution,” Proc. 18th Int’l Parallel and Distributed
Processing Symp. (IPDPS ’04), Ninth Int’l Workshop High-Level
Parallel Programming Models and Supportive Environments (HIPS
’04), pp. 42-51, http://www.cs.washington.edu/research/zpl/
papers/data/Deitz04.pdf, Apr. 2004.

[23] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
Dimensionally Equidistributed Unif Orm Pseudorandom Number
Generator,” ACM Trans. Modeling and Computer Simulations, vol. 8,
no. 1, pp. 3-30, http://www.math.keio.ac.jp/ nisimura/random/
doc/mt.ps, Jan. 1998.

[24] A. Hoisie, O.M. Lubeck, and H.J. Wasserman, “Scalability Analysis
of Multidimensional Wavefront Algorithms on Large-Scale SMP
Clusters,” Proc. Seventh Symp. Frontiers of Massively Parallel
Computing (Frontiers ’99), pp. 4-15, http://www.c3.lanl. gov/
pal/publications/papers/Hoisie1999:Sweep3D.pdf, Feb. 1999.

[25] W.R. Stevens, B. Fenner, and A.M. Rudoff, “The Sockets
Networking API,” Unix Network Programming, vol. 1, third ed.,
Addison-Wesley, Nov. 2003.

[26] E.R. Gansner and S.C. North, “An Open Graph Visualization
System and Its Applications to Software Engineering,” Soft-
ware—Practice and Experience, vol. 30, no. 11, pp. 1203-1233,
http://www.research.att.com/sw/tools/graphviz/GN99.pdf,
Sept. 2000.

[27] H. Voß, PSTricks: Grafik mit PostScript für TEX und LATEX.
Lehmanns Fachbuchhandlung, 2005.

[28] E. Strohmaier and H. Shan, “Apex-Map: A Global Data Access
Benchmark to Analyze HPC Systems and Parallel Programming
Paradigms,” Proc. ACM/IEEE Supercomputing Conf. (SC ’05),
http://sc05.supercomputing.org/schedule/pdf/pap280.pdf,
Nov. 2005.

[29] Information Networks Division, Netperf: A Network Performance
Benchmark, Revision 2.1, Hewlett-Packard Company, http://
www.netperf.org/netperf/training/netperf.ps, Feb. 1996.

[30] J. Armstrong, R. Virding, C. Wikström, and M. Williams,
Concurrent Programming in Erlang, second ed., Prentice Hall,
http://www.erlang.org/download/erlang-book-part1.pdf (part 1
only), Jan. 1996.

[31] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D.K.
Panda, and P. Wyckoff, “Microbenchmark Performance Compar-
ison of High-Speed Cluster Interconnects,” IEEE Micro, pp. 2-12,
http://nowlab.cis.ohio-state.edu/publications/journal-papers/
2004/liuj-ieeemicro04.pdf, Jan.-Feb. 2004.

[32] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The
Quadrics Network: High-Performance Clustering Technology,”
IEEE Micro, vol. 22, no. 1, pp. 46-57, http://www.c3.lanl.gov/
pal/publications/papers/petrini02:qsnet-micro.pdf, Jan.-Feb.
2002.

Scott Pakin received the BS degree in mathe-
matics/computer science with research honors
from Carnegie Mellon University in May 1992,
the MS degree in computer science from the
University of Illinois, Urbana-Champaign, in
January 1995, and the PhD degree from the
University of Illinois, Urbana-Champaign, in
October 2001. Since 2002, he has worked as a
technical staff member in the Performance and
Architecture Lab (PAL) at the Los Alamos

National Laboratory. His current research interests include analyzing
and improving the performance of high-performance computing systems
with particular emphasis on the communication subsystem. He has
published papers on such topics as high-speed messaging layers,
language design and implementation, job-scheduling algorithms, and
resource-management systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PAKIN: THE DESIGN AND IMPLEMENTATION OF A DOMAIN-SPECIFIC LANGUAGE FOR NETWORK PERFORMANCE TESTING 1449

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

